반응형

022818_Abdul, Rebecca, Henry_EDP 554 - Spring 2018 - Assignment 1.docx
1.02MB
Henry_EDP 554 - Spring 2018 - Assignment 1.docx
0.35MB
Henry2_EDP 554 - Spring 2018 - Assignment 1.docx
0.38MB
Reading Attitudes (Part B - Student Version).sav
0.00MB

반응형

'Statistics' 카테고리의 다른 글

Anova Assignment 3  (0) 2019.10.02
Anova Assignment 2  (0) 2019.10.02
Anova Lectures 1-10  (0) 2019.10.02
Multiple Regression - Lecture PPT 8-13  (0) 2019.10.02
Multiple Regression - Lecture PPT 1-7  (0) 2019.10.01
반응형

Lecture 1 - Descriptive Statistics and the Normal Distribution - STUDENT VERSION.pptx
1.07MB
Lecture 2 - Statistical Inference with Z- and t-Tests - STUDENT VERSION.pptx
1.92MB
Lecture 3 - One-Way ANOVA - STUDENT VERSION(2).pptx
1.40MB
Lecture 4 - One-Way ANOVA Post-Hoc Comparisons - STUDENT VERSION(1).ppt
1.36MB
Lecture 5 - Two-Way ANOVA - STUDENT VERSION.ppt
1.78MB
Lecture 6 - Two-Way ANOVA Post-Hoc Comparisons - STUDENT VERSION.ppt
1.14MB
Lecture 7 - RBANOVA - STUDENT VERSION.pptx
0.92MB
Lecture 8 - RBANOVA Reliability and Post-Hoc Comparisons - STUDENT VERSION(1).ppt
2.58MB
Lecture 9 - SPANOVA - STUDENT VERSION(2) (1).pptx
3.94MB
Lecture 10 - SPANOVA Post-Hoc Comparisons - STUDENT VERSION(2).pptx
3.42MB

반응형

'Statistics' 카테고리의 다른 글

Anova Assignment 2  (0) 2019.10.02
Anova Assignment 1  (0) 2019.10.02
Multiple Regression - Lecture PPT 8-13  (0) 2019.10.02
Multiple Regression - Lecture PPT 1-7  (0) 2019.10.01
SPSS - Steps to Run Regression Types  (0) 2019.10.01
반응형

day8(2).ppt
2.38MB
day9(3).ppt
3.31MB
day10.ppt
1.24MB
day11(1).ppt
3.93MB
day12(2).pptx
1.77MB
day13.pptx
2.41MB

반응형

'Statistics' 카테고리의 다른 글

Anova Assignment 1  (0) 2019.10.02
Anova Lectures 1-10  (0) 2019.10.02
Multiple Regression - Lecture PPT 1-7  (0) 2019.10.01
SPSS - Steps to Run Regression Types  (0) 2019.10.01
Statistics - SPSS guide for Class Ex 1  (0) 2019.10.01
반응형

day1(2).ppt
1.39MB
day2(1).ppt
2.53MB
day3(1).ppt
3.68MB
day4(2).ppt
3.58MB
day5(1).ppt
3.83MB
day6(2).ppt
2.10MB
day7(1).ppt
2.39MB

반응형

'Statistics' 카테고리의 다른 글

Anova Lectures 1-10  (0) 2019.10.02
Multiple Regression - Lecture PPT 8-13  (0) 2019.10.02
SPSS - Steps to Run Regression Types  (0) 2019.10.01
Statistics - SPSS guide for Class Ex 1  (0) 2019.10.01
Statistics - Z-table, T-table, F-table  (0) 2019.10.01
반응형

Steps to Run Regression Types

 

Simultaneous Regression

1.     Analyze > Regression > Linear

2.     Enter the variables into the regression model

a.     Place history in the DV box

b.     Move all other variables over into the IV box

3.     Click Ok

 

Hierarchical Regression

1.     Analyze > Regression > Linear

2.     Enter the variables into the regression model

a.     Place history in the DV box

b.     Place SES in the IV box -> click next

c.     Place race dummy codes in IV box ->click next

d.     Place grades in IV box ->click next

e.     Place Locus and SC in IV box ->click next

3.     Select statistics box

a.     Mark “R square change” and part and partial correlations

4.     Click continue then OK

 

Stepwise Regression

1.     Analyze > Regression > Linear

2.     Enter variables into regression model

a.     Place history in the DV box

b.     Place grades, SES, self concept and locus in the IV box

c.     Do not move race variables into the IV box (they are a structural set, and do not make sense alone)

3.     Under IV box, select “stepwise” for the method

4.     Click OK

 

Note: In between each regression type, you will need to click “reset” in the regression window

 

Compare Outputs of Different Regressions

 

1.     Things to pay attention to

a.       Simultaneous regression –

                               i.       R2 and associated statistics used to determine statistical significance and importance of overall regression

                              ii.       Regression coefficients to determine magnitude of each variable

b.       Hierarchical/Sequential Regression

                               i.       Change in R2

c.        Stepwise Regression

                                 i.     Change in R2

                                ii.     Regression coefficients

2.     Compare regression outputs

a.       How does the R2 change across each model?

b.       Are the regression coefficients (and significance values) similar across the models?

c.        What conclusions can you draw from the different model types?

반응형

+ Recent posts